A mathematical expression known as Benford’s law provides an example of an unex-pected relationship among randomly selected sequences of first significant digits (FSD). Newcomb (1881), and later Benford (1938), conjectured that FSD’s would exhibit a weakly monotonic decreasing distribution and proposed a frequency proportional to the logarithmic rule. Unfortunately, the Benford FSD function does not hold for a wide range of scale-invariant multiplicative data. To confront this problem we use information-theoretic methods to develop a data-based family of alternative Benford-like exponential distributions that provide null hypotheses for testing purposes. Two data sets are used to illustrate the performance of generalized Benford-like distri...
In this paper, we focus on the first significant digit (FSD) distribution of European micro income d...
====Draft Version. Only cite with permission from the author==== This paper provides a broad overvie...
In 1881, Newcomb conjectured that the first significant digits (FSDs) of numbers in statistical tabl...
Benford distributions of leading digits arise in a multitude of everyday settings, yet the establish...
The 29th European Signal Processing Conference (EUSIPCO 2021), Dublin, Ireland, 23-27 August 2021Man...
Many distributions for first digits of integer sequences are not Benford. A simple method to derive ...
The quasi-empirical Benford law predicts that the distribution of the first significant digit of ran...
In this paper, we will see that the proportion of d as leading digit, d ∈ 1, 9, in data (obtained th...
ABSTRACT. Benford’s law states that many data sets have a bias towards lower leading digits (about 3...
In this paper, we will see that the proportion of d as p th digit, where p > 1 and d ∈ 0, 9, in data...
We present two sufficient conditions for an absolutely continuous random variable to obey Benford's ...
We consider positive real valued random data X with the decadic representation X=Si=-¥¥Di 10i and th...
More than 100 years ago it was predicted that the distribution of first digits of real world observa...
Benford's law is nowadays extremely popular (see e.g. http://en.wikipedia.org/...). It is usually cl...
We consider positive real valued random data X with the decadic representation X = i=−∞Di 10 i and t...
In this paper, we focus on the first significant digit (FSD) distribution of European micro income d...
====Draft Version. Only cite with permission from the author==== This paper provides a broad overvie...
In 1881, Newcomb conjectured that the first significant digits (FSDs) of numbers in statistical tabl...
Benford distributions of leading digits arise in a multitude of everyday settings, yet the establish...
The 29th European Signal Processing Conference (EUSIPCO 2021), Dublin, Ireland, 23-27 August 2021Man...
Many distributions for first digits of integer sequences are not Benford. A simple method to derive ...
The quasi-empirical Benford law predicts that the distribution of the first significant digit of ran...
In this paper, we will see that the proportion of d as leading digit, d ∈ 1, 9, in data (obtained th...
ABSTRACT. Benford’s law states that many data sets have a bias towards lower leading digits (about 3...
In this paper, we will see that the proportion of d as p th digit, where p > 1 and d ∈ 0, 9, in data...
We present two sufficient conditions for an absolutely continuous random variable to obey Benford's ...
We consider positive real valued random data X with the decadic representation X=Si=-¥¥Di 10i and th...
More than 100 years ago it was predicted that the distribution of first digits of real world observa...
Benford's law is nowadays extremely popular (see e.g. http://en.wikipedia.org/...). It is usually cl...
We consider positive real valued random data X with the decadic representation X = i=−∞Di 10 i and t...
In this paper, we focus on the first significant digit (FSD) distribution of European micro income d...
====Draft Version. Only cite with permission from the author==== This paper provides a broad overvie...
In 1881, Newcomb conjectured that the first significant digits (FSDs) of numbers in statistical tabl...